首页> 外文OA文献 >Molecular Electronics by Chemical Modification of Semiconductor Surfaces
【2h】

Molecular Electronics by Chemical Modification of Semiconductor Surfaces

机译:半导体表面化学修饰的分子电子学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Inserting molecular monolayers within metal / semiconductor interfacesprovides one of the most powerful expressions of how minute chemicalmodifications can affect electronic devices. This topic also has directimportance for technology as it can help improve the efficiency of a variety ofelectronic devices such as solar cells, LEDs, sensors and possible futurebioelectronic devices, which are based mostly on non-classical semiconductingmaterials (section 1). The review covers the main aspects of using chemistry to- control alignment of energy levels at interfaces (section 2): - passivateinterface states (section 3), - insert molecular dipoles at interfaces (section4), - induce charge rearrangement at and around interfaces (section 5). Aftersetting the stage, we consider the unique current-voltage characteristics thatresult from transport across metal / molecular monolayer / semiconductorinterfaces. Here we focus on the interplay between the monolayer as tunnelingbarrier on the one hand, and the electrostatic barrier within thesemiconductor, due to its space-charge region (section 6), on the other hand,as well as how different monolayer chemistries control each of the thesebarriers. Section 7 provides practical tools to experimentally identify thesetwo barriers, and distinguish between them, after which section 8 concludes thestory with a summary and a view to the future. While this review is concernedwith hybrid semiconductor / molecular effects (see Refs. 1,2 for earlierreviews on this topic), issues related to formation of monolayers and contacts,as well as charge transport that is solely dominated by molecules, have beenreviewed elsewhere[3-6], including by us recently[7].
机译:在金属/半导体界面中插入分子单分子层是最微小的化学修饰如何影响电子设备的最有力表达之一。本主题对技术也具有直接重要性,因为它可以帮助提高各种电子设备的效率,例如太阳能电池,LED,传感器和可能的未来生物电子设备,这些设备主要基于非经典的半导体材料(第1节)。该综述涵盖了使用化学方法来控制界面能级对齐的主要方面(第2节):-钝化界面态(第3节),-在界面处插入分子偶极子(第4节),-在界面及其周围引起电荷重排(第5条)。设置阶段之后,我们考虑由跨金属/分子单层/半导体界面传输产生的独特电流-电压特性。在这里,我们一方面关注作为隧道势垒的单分子层与这些半导体内的静电势垒之间的相互作用,另一方面,由于其空间电荷区(第6节),以及不同的单分子层化学如何控制每一个分子这些障碍。第7节提供了实用的工具,可以通过实验确定这两个障碍并加以区分,然后在第8节中总结了这一理论并总结了对未来的展望。虽然本篇评论涉及混合半导体/分子效应(有关该主题的较早评论,请参见参考文献1,2),但与单分子层和接触的形成以及仅由分子控制的电荷传输有关的问题已在其他地方进行了评论[3]。 -6],包括我们最近发布的内容[7]。

著录项

  • 作者

    Vilan, Ayelet; Cahen, David;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号